
ANSWER TO HOMEWORK II

Solution 1. Recall the fundamental solution to the Laplace equation ∆u = 0 in
R2,

Φ(x, y) = − 1

4π
log(x2 + y2).

Therefore we construct the Green’s function in the following ways.

(1)

G(x, y; ξ, η) = − 1

4π
log

(x− ξ)2 + (y − η)2

(x− ξ)2 + (y + η)2
.

(2)

G(x, y; ξ, η) = − 1

4π
log

[
(x− ξ)2 + (y − η)2

(x+ ξ)2 + (y − η)2
(x+ ξ)2 + (y + η)2

(x− ξ)2 + (y + η)2

]
.

Solution 2. Recall the fundamental solution to the heat equation ut −∆u = 0 in
R+ × Rn,

Φ(t, x) =
1

(4πt)
n
2
e−

|x|2
4t .

Therefore we construct the Green’s function in the following ways.

(1)

G(t, x; τ, ξ) =
1√

4π(t− τ)

∞∑
n=−∞

[
e−

|x−ξ−2nl|2
4(t−τ) − e−

|x+ξ−2nl|2
4(t−τ)

]
.

(2)

G(t, x, y; τ, ξ, η) =
1

4π(t− τ)

[
e−

|x−ξ|2+|y−η|2
4(t−τ) − e−

|x−ξ|2+|y+η|2
4(t−τ)

+e−
|x+ξ|2+|y−η|2

4(t−τ) − e−
|x+ξ|2+|y+η|2

4(t−τ)

]
.

Solution 3. (1) Let v(t, x) = e−tu(t, x), then

vt(t, x)− vxx(t, x) = 0,

therefore

v(t, x) =
1√
4πt

∫
R
e−

|x−y|2
4t ϕ(y)dy,

then

u(t, x) = et
1√
4πt

∫
R
e−

|x−y|2
4t ϕ(y)dy.

(2) Let v(t, x) = u(t, x− t), then

vt(t, x)− vxx(t, x) = 0,

therefore

v(t, x) =
1√
4πt

∫
R
e−

|x−y|2
4t ϕ(y)dy,
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then

u(t, x) =
1√
4πt

∫
R
e−

|x+t−y|2
4t ϕ(y)dy.

Solution 4. (1) Since for (t, x) ∈ {t = 0} × [0, 1],

u(t, x) = x(1− x) ≥ 0,

and for (t, x) ∈ [0,∞)× {x = 0, 1},

u(t, x) = 0,

therefore by the maximum principle, we have

u(t, x) ≥ 0, ∀(t, x) ∈ [0,∞)× [0, 1].

(2) Denote w(t, x) = x(1− x)e−t, and let v = w − u, then

vt(t, x)− vxx(t, x) = (2− x(1− x))e−t, (t, x) ∈ (0,∞)× [0, 1],

v(0, x) = 0, x ∈ [0, 1],

v(t, 0) = v(t, 1) = 0, t ∈ (0,∞).

Since for (t, x) ∈ {t = 0} × [0, 1] ∪ [0,∞)× {x = 0, 1},

v(t, x) = 0,

and

vt(t, x)− vxx(t, x) ≥ 0,

then by the maximum principle, we have

v(t, x) ≥ 0,

which implies

u(t, x) ≤ x(1− x)e−t, ∀(t, x) ∈ [0,∞)× [0, 1].

Since u(t, x) ≥ 0, therefore

lim
t→∞

sup
x∈[0,1]

|u(t, x)| ≤ lim
t→∞

sup
x∈[0,1]

|x(1− x)e−t| = 0.

Solution 5. (1) We first assume 8c(T + 1) < 1. For arbitrary y ∈ R, define

v(t, x) = u(t, x)− ε√
T + 1− t

e
|x−y|2

4(T+1−t) , (t, x) ∈ [0, T ]× R.

Then

vt(t, x)− vxx(t, x) = 0

Let r > 0 and consider [0, T ]× [y− r, y+ r], if (t, x) ∈ {t = 0} × [y− r, y+ r], then

v(0, x) =u(0, x)− ε√
T + 1

e
|x−y|2
4(T+1)

≤ sup
R

ϕ(x),
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if (t, x) ∈ [0, T ]× {x = y − r, y + r}, then

v(t, x) =u(t, x)− ε√
T + 1− t

e
|x−y|2

4(T+1−t)

≤Cec(|y|+r)2 − ε√
T + 1

e
r2

4(T+1)

≤Cec(|y|+r)2 − ε√
T + 1

e2cr
2

,

by choosing r sufficiently large,

v(t, x) ≤ sup
R

ϕ(x).

Therefore by the maximum principle, we have

sup
(0,T )×[y−r,y+r]

v ≤ sup
R

ϕ(x),

Since y is arbitrary,
sup

(0,T )×R
v ≤ sup

R
ϕ(x),

then by letting ε goes to 0, we have

sup
(0,T )×R

u ≤ sup
R

ϕ(x).

In general, for arbitrary T > 0, we repeatedly apply the above result on the time
intervals [0, T1], [T1, 2T1], ..., where T1 > 0 such that 8c(T1 + 1) ≤ 1, then we have

sup
(0,T )×R

u ≤ sup
R

ϕ(x).

Apply the above result for −u, we also have

sup
(0,T )×R

−u ≤ sup
R

−ϕ(x).

therefore
sup
(0,T )

|u| ≤ sup
R

|ϕ(x)|.

(2) It suffices to show that

ũ(t, x) =

∞∑
k=0

dkφ(t)

dtk
x2k

(2k)!
,

satisfies
ũt(t, x)− ũxx(t, x) = 0,

and ũ(0, x) = 0.
Firstly, we prove ũ is well-defined. Since∣∣∣∣ dkdtkφ(t)

∣∣∣∣ ≤ k!

(
2

t

)k

e−
1

4t2 , ∀k ∈ N,

therefore for arbitrary |x| ≤ r,∣∣∣∣∣
∞∑
k=0

dkφ(t)

dtk
x2k

(2k)!

∣∣∣∣∣ ≤e−
1

4t2

∞∑
k=0

k!

(
2

t

)k
r2k

(2k)!

≤e−
1

4t2
+ r2

t ,
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which implies ũ is well-defined.
Secondly, we prove ũ satisfies

ũt(t, x)− ũxx(t, x) = 0,

and ũ(0, x) = 0. Indeed, by direct computation, we have ũ(0, x) = 0, and

∂2ũ

∂x2
=

∞∑
k=0

dkφ(t)

dtk
∂2

∂x2

(
x2k

(2k)!

)

=

∞∑
k=1

dkφ(t)

dtk
2k(2k − 1)

x2k−2

(2k)!

=

∞∑
k=1

dkφ(t)

dtk
x2(k−1)

(2(k − 1))!

=

∞∑
k=0

dk+1φ(t)

dtk+1

x2k

(2k)!

=
∂ũ

∂t
.


