ANSWER TO HOMEWORK II

Solution 1. Recall the fundamental solution to the Laplace equation $\Delta u=0$ in \mathbb{R}^{2},

$$
\Phi(x, y)=-\frac{1}{4 \pi} \log \left(x^{2}+y^{2}\right)
$$

Therefore we construct the Green's function in the following ways.
(1)

$$
G(x, y ; \xi, \eta)=-\frac{1}{4 \pi} \log \frac{(x-\xi)^{2}+(y-\eta)^{2}}{(x-\xi)^{2}+(y+\eta)^{2}}
$$

(2)

$$
G(x, y ; \xi, \eta)=-\frac{1}{4 \pi} \log \left[\frac{(x-\xi)^{2}+(y-\eta)^{2}}{(x+\xi)^{2}+(y-\eta)^{2}} \frac{(x+\xi)^{2}+(y+\eta)^{2}}{(x-\xi)^{2}+(y+\eta)^{2}}\right]
$$

Solution 2. Recall the fundamental solution to the heat equation $u_{t}-\Delta u=0$ in $\mathbb{R}_{+} \times \mathbb{R}^{n}$,

$$
\Phi(t, x)=\frac{1}{(4 \pi t)^{\frac{n}{2}}} e^{-\frac{|x|^{2}}{4 t}}
$$

Therefore we construct the Green's function in the following ways.
(1)

$$
G(t, x ; \tau, \xi)=\frac{1}{\sqrt{4 \pi(t-\tau)}} \sum_{n=-\infty}^{\infty}\left[e^{-\frac{|x-\xi-2 n l|^{2}}{4(t-\tau)}}-e^{-\frac{|x+\xi-2 n u|^{2}}{4(t-\tau)}}\right]
$$

(2)

$$
\begin{aligned}
G(t, x, y ; \tau, \xi, \eta)=\frac{1}{4 \pi(t-\tau)}\left[e^{-\frac{|x-\xi|^{2}+|y-\eta|^{2}}{4(t-\tau)}}\right. & -e^{-\frac{|x-\xi|^{2}+|y+\eta|^{2}}{4(t-\tau)}} \\
& \left.+e^{-\frac{|x+\xi|^{2}+|y-\eta|^{2}}{4(t-\tau)}}-e^{-\frac{|x+\xi|^{2}+|y+\eta|^{2}}{4(t-\tau)}}\right]
\end{aligned}
$$

Solution 3. (1) Let $v(t, x)=e^{-t} u(t, x)$, then

$$
v_{t}(t, x)-v_{x x}(t, x)=0
$$

therefore

$$
v(t, x)=\frac{1}{\sqrt{4 \pi t}} \int_{\mathbb{R}} e^{-\frac{|x-y|^{2}}{4 t}} \phi(y) d y
$$

then

$$
u(t, x)=e^{t} \frac{1}{\sqrt{4 \pi t}} \int_{\mathbb{R}} e^{-\frac{|x-y|^{2}}{4 t}} \phi(y) d y
$$

(2) Let $v(t, x)=u(t, x-t)$, then

$$
v_{t}(t, x)-v_{x x}(t, x)=0
$$

therefore

$$
v(t, x)=\frac{1}{\sqrt{4 \pi t}} \int_{\mathbb{R}} e^{-\frac{|x-y|^{2}}{4 t}} \phi(y) d y
$$

then

$$
u(t, x)=\frac{1}{\sqrt{4 \pi t}} \int_{\mathbb{R}} e^{-\frac{|x+t-y|^{2}}{4 t}} \phi(y) d y
$$

Solution 4. (1) Since for $(t, x) \in\{t=0\} \times[0,1]$,

$$
u(t, x)=x(1-x) \geq 0,
$$

and for $(t, x) \in[0, \infty) \times\{x=0,1\}$,

$$
u(t, x)=0,
$$

therefore by the maximum principle, we have

$$
u(t, x) \geq 0, \quad \forall(t, x) \in[0, \infty) \times[0,1] .
$$

(2) Denote $w(t, x)=x(1-x) e^{-t}$, and let $v=w-u$, then

$$
\begin{aligned}
v_{t}(t, x)-v_{x x}(t, x) & =(2-x(1-x)) e^{-t}, \quad(t, x) \in(0, \infty) \times[0,1] \\
v(0, x) & =0, \quad x \in[0,1] \\
v(t, 0) & =v(t, 1)=0, \quad t \in(0, \infty)
\end{aligned}
$$

Since for $(t, x) \in\{t=0\} \times[0,1] \cup[0, \infty) \times\{x=0,1\}$,

$$
v(t, x)=0,
$$

and

$$
v_{t}(t, x)-v_{x x}(t, x) \geq 0,
$$

then by the maximum principle, we have

$$
v(t, x) \geq 0
$$

which implies

$$
u(t, x) \leq x(1-x) e^{-t}, \quad \forall(t, x) \in[0, \infty) \times[0,1]
$$

Since $u(t, x) \geq 0$, therefore

$$
\lim _{t \rightarrow \infty} \sup _{x \in[0,1]}|u(t, x)| \leq \lim _{t \rightarrow \infty} \sup _{x \in[0,1]}\left|x(1-x) e^{-t}\right|=0 .
$$

Solution 5. (1) We first assume $8 c(T+1)<1$. For arbitrary $y \in \mathbb{R}$, define

$$
v(t, x)=u(t, x)-\frac{\varepsilon}{\sqrt{T+1-t}} e^{\frac{|x-y|^{2}}{4(T+1-t)}}, \quad(t, x) \in[0, T] \times \mathbb{R} .
$$

Then

$$
v_{t}(t, x)-v_{x x}(t, x)=0
$$

Let $r>0$ and consider $[0, T] \times[y-r, y+r]$, if $(t, x) \in\{t=0\} \times[y-r, y+r]$, then

$$
\begin{aligned}
v(0, x) & =u(0, x)-\frac{\varepsilon}{\sqrt{T+1}} e^{\frac{|x-y|^{2}}{4(T+1)}} \\
& \leq \sup _{\mathbb{R}} \phi(x)
\end{aligned}
$$

if $(t, x) \in[0, T] \times\{x=y-r, y+r\}$, then

$$
\begin{aligned}
v(t, x) & =u(t, x)-\frac{\varepsilon}{\sqrt{T+1-t}} e^{\frac{|x-y|^{2}}{4(T+1-t)}} \\
& \leq C e^{c(|y|+r)^{2}}-\frac{\varepsilon}{\sqrt{T+1}} e^{\frac{r^{2}}{4(T+1)}} \\
& \leq C e^{c(|y|+r)^{2}}-\frac{\varepsilon}{\sqrt{T+1}} e^{2 c r^{2}}
\end{aligned}
$$

by choosing r sufficiently large,

$$
v(t, x) \leq \sup _{\mathbb{R}} \phi(x)
$$

Therefore by the maximum principle, we have

$$
\sup _{(0, T) \times[y-r, y+r]} v \leq \sup _{\mathbb{R}} \phi(x),
$$

Since y is arbitrary,

$$
\sup _{(0, T) \times \mathbb{R}} v \leq \sup _{\mathbb{R}} \phi(x),
$$

then by letting ε goes to 0 , we have

$$
\sup _{(0, T) \times \mathbb{R}} u \leq \sup _{\mathbb{R}} \phi(x) .
$$

In general, for arbitrary $T>0$, we repeatedly apply the above result on the time intervals $\left[0, T_{1}\right],\left[T_{1}, 2 T_{1}\right], \ldots$, where $T_{1}>0$ such that $8 c\left(T_{1}+1\right) \leq 1$, then we have

$$
\sup _{(0, T) \times \mathbb{R}} u \leq \sup _{\mathbb{R}} \phi(x) .
$$

Apply the above result for $-u$, we also have

$$
\sup _{(0, T) \times \mathbb{R}}-u \leq \sup _{\mathbb{R}}-\phi(x)
$$

therefore

$$
\sup _{(0, T)}|u| \leq \sup _{\mathbb{R}}|\phi(x)| .
$$

(2) It suffices to show that

$$
\tilde{u}(t, x)=\sum_{k=0}^{\infty} \frac{d^{k} \varphi(t)}{d t^{k}} \frac{x^{2 k}}{(2 k)!},
$$

satisfies

$$
\tilde{u}_{t}(t, x)-\tilde{u}_{x x}(t, x)=0,
$$

and $\tilde{u}(0, x)=0$.
Firstly, we prove \tilde{u} is well-defined. Since

$$
\left|\frac{d^{k}}{d t^{k}} \varphi(t)\right| \leq k!\left(\frac{2}{t}\right)^{k} e^{-\frac{1}{4 t^{2}}}, \quad \forall k \in \mathbb{N},
$$

therefore for arbitrary $|x| \leq r$,

$$
\begin{aligned}
\left|\sum_{k=0}^{\infty} \frac{d^{k} \varphi(t)}{d t^{k}} \frac{x^{2 k}}{(2 k)!}\right| & \leq e^{-\frac{1}{4 t^{2}}} \sum_{k=0}^{\infty} k!\left(\frac{2}{t}\right)^{k} \frac{r^{2 k}}{(2 k)!} \\
& \leq e^{-\frac{1}{4 t^{2}}+\frac{r^{2}}{t}}
\end{aligned}
$$

which implies \tilde{u} is well-defined.
Secondly, we prove \tilde{u} satisfies

$$
\tilde{u}_{t}(t, x)-\tilde{u}_{x x}(t, x)=0,
$$

and $\tilde{u}(0, x)=0$. Indeed, by direct computation, we have $\tilde{u}(0, x)=0$, and

$$
\begin{aligned}
\frac{\partial^{2} \tilde{u}}{\partial x^{2}} & =\sum_{k=0}^{\infty} \frac{d^{k} \varphi(t)}{d t^{k}} \frac{\partial^{2}}{\partial x^{2}}\left(\frac{x^{2 k}}{(2 k)!}\right) \\
& =\sum_{k=1}^{\infty} \frac{d^{k} \varphi(t)}{d t^{k}} 2 k(2 k-1) \frac{x^{2 k-2}}{(2 k)!} \\
& =\sum_{k=1}^{\infty} \frac{d^{k} \varphi(t)}{d t^{k}} \frac{x^{2(k-1)}}{(2(k-1))!} \\
& =\sum_{k=0}^{\infty} \frac{d^{k+1} \varphi(t)}{d t^{k+1}} \frac{x^{2 k}}{(2 k)!} \\
& =\frac{\partial \tilde{u}}{\partial t}
\end{aligned}
$$

